November 15, 2023
By Anne
Trafton | MIT News
Microbes could help
reduce the need for chemical fertilizers
Production of chemical fertilizers accounts for about 1.5 percent of
the world’s greenhouse gas emissions. MIT chemists hope to help reduce
that carbon footprint by replacing some chemical fertilizer with a
more sustainable source — bacteria.
Bacteria that can convert nitrogen gas to ammonia could not only
provide nutrients that plants need, but also help regenerate soil and
protect plants from pests. However, these bacteria are sensitive to
heat and humidity, so it’s difficult to scale up their manufacture and
ship them to farms.
To overcome that obstacle, MIT chemical engineers have devised a
metal-organic coating that protects bacterial cells from damage
without impeding their growth or function. In a new study, they found
that these coated bacteria improved the germination rate of a variety
of seeds, including vegetables such as corn and bok choy.
This coating could make it much easier for farmers to deploy microbes
as fertilizers, says Ariel Furst, the Paul M. Cook Career Development
Assistant Professor of Chemical Engineering at MIT and the senior
author of the study.
“We can protect them from the drying process, which would allow us to
distribute them much more easily and with less cost because they’re a
dried powder instead of in liquid,” she says. “They can also withstand
heat up to 132 degrees Fahrenheit, which means that you wouldn’t have
to use cold storage for these microbes.”
Benjamin Burke ’23 and postdoc Gang Fan are the lead authors of the
open-access paper, which appears in the Journal of the American
Chemical Society Au. MIT undergraduate Pris Wasuwanich and Evan Moore
’23 are also authors of the study.
Protecting microbes
Chemical fertilizers are manufactured using an energy-intensive
process known as Haber-Bosch, which uses extremely high pressures to
combine nitrogen from the air with hydrogen to make ammonia.
In addition to the significant carbon footprint of this process,
another drawback to chemical fertilizers is that long-term use
eventually depletes the nutrients in the soil. To help restore soil,
some farmers have turned to “regenerative agriculture,” which uses a
variety of strategies, including crop rotation and composting, to keep
soil healthy. Nitrogen-fixing bacteria, which convert nitrogen gas to
ammonia, can aid in this approach.
Some farmers have already begun deploying these “microbial
fertilizers,” growing them in large onsite fermenters before applying
them to the soil. However, this is cost-prohibitive for many farmers.
Shipping these bacteria to rural areas is not currently a viable
option, because they are susceptible to heat damage. The microbes are
also too delicate to survive the freeze-drying process that would make
them easier to transport.
To protect the microbes from both heat and freeze-drying, Furst
decided to apply a coating called a metal-phenol network (MPN), which
she has previously developed to encapsulate microbes for other uses,
such as protecting therapeutic bacteria delivered to the digestive
tract.
The coatings contain two components — a metal and an organic compound
called a polyphenol — that can self-assemble into a protective shell.
The metals used for the coatings, including iron, manganese, aluminum,
and zinc, are considered safe as food additives. Polyphenols, which
are often found in plants, include molecules such as tannins and other
antioxidants. The FDA classifies many of these polyphenols as GRAS
(generally regarded as safe).
“We are using these natural food-grade compounds that are known to
have benefits on their own, and then they form these little suits of
armor that protect the microbes,” Furst says.
For this study, the researchers created 12 different MPNs and used
them to encapsulate Pseudomonas chlororaphis, a nitrogen-fixing
bacterium that also protects plants against harmful fungi and other
pests. They found that all of the coatings protected the bacteria from
temperatures up to 50 degrees Celsius (122 degrees Fahrenheit), and
also from relative humidity up to 48 percent. The coatings also kept
the microbes alive during the freeze-drying process.
A boost for seeds
Using microbes coated with the most effective MPN — a combination of
manganese and a polyphenol called epigallocatechin gallate (EGCG) —
the researchers tested their ability to help seeds germinate in a lab
dish. They heated the coated microbes to 50 C before placing them in
the dish, and compared them to fresh uncoated microbes and
freeze-dried uncoated microbes.
The researchers found that the coated microbes improved the seeds’
germination rate by 150 percent, compared to seeds treated with fresh,
uncoated microbes. This result was consistent across several different
types of seeds, including dill, corn, radishes, and bok choy.
Furst has started a company called Seia Bio to commercialize the
coated bacteria for large-scale use in regenerative agriculture. She
hopes that the low cost of the manufacturing process will help make
microbial fertilizers accessible to small-scale farmers who don’t have
the fermenters needed to grow such microbes.
“When we think about developing technology, we need to intentionally
design it to be inexpensive and accessible, and that’s what this
technology is. It would help democratize regenerative agriculture,”
she says.
The research was funded by the Army Research Office, a National
Institutes of Health New Innovator Award, a National Institute for
Environmental Health Sciences Core Center Grant, the CIFAR Azrieli
Global Scholars Program, the Abdul Latif Jameel Water and Food Systems
Lab at MIT, the MIT Climate and Sustainability Consortium, and the MIT
Deshpande Center.
Green Play Ammonia™, Yielder® NFuel Energy.
Spokane, Washington. 99212
509 995 1879
Cell, Pacific Time Zone.
General office:
509-254
6854
4501 East Trent
Ave.
Spokane, WA 99212
|